Entradas populares

4.21.2014

LOS ESTADOS DE LA MATERIA



La materia se presenta en tres estados o formas de agregaciónsólidolíquido y gaseoso.
Dadas las condiciones existentes en la superficie terrestre, sólo algunas sustancias pueden hallarse de modo natural en los tres estados, tal es el caso del agua.
La mayoría de sustancias se presentan en un estado concreto. Así, los metales o las sustancias que constituyen los minerales se encuentran en estado sólido y el oxígeno o el CO2 en estado gaseoso:
  • Los sólidos: Tienen forma y volumen constantes. Se caracterizan por la rigidez y regularidad de sus estructuras.
  • Los líquidos: No tienen forma fija pero sí volumen. La variabilidad de forma y el presentar unas propiedades muy específicas son características de los líquidos.
  • Los gases: No tienen forma ni volumen fijos. En ellos es muy característica la gran variación de volumen que experimentan al cambiar las condiciones de temperatura y presión.

Los sólidos se caracterizan por tener forma y volumen constantes. Esto se debe a que las partículas que los forman están unidas por unas fuerzas de atracción grandes de modo que ocupan posiciones casi fijas.
En el estado sólido las partículas solamente pueden moverse vibrando u oscilando alrededor de posiciones fijas, pero no pueden moverse trasladándose libremente a lo largo del sólido.
Las partículas en el estado sólido propiamente dicho, se disponen de forma ordenada, con una regularidad espacial geométrica, que da lugar a diversas estructuras cristalinas.
Al aumentar la temperatura aumenta la vibración de las partículas:



 
Los líquidos, al igual que los sólidos, tienen volumen constante. En los líquidos las partículas están unidas por unas fuerzas de atracción menores que en los sólidos, por esta razón las partículas de un líquido pueden trasladarse con libertad. El número de partículas por unidad de volumen es muy alto, por ello son muy frecuentes las colisiones y fricciones entre ellas.
Así se explica que los líquidos no tengan forma fija y adopten la forma del recipiente que los contiene. También se explican propiedades como la fluidez  la .viscosidad
En los líquidos el movimiento es desordenado, pero existen asociaciones de varias partículas que, como si fueran una, se mueven al unísono. Al aumentar la temperatura aumenta la movilidad de las partículas (su energía).




Los gases, igual que los líquidos, no tienen forma fija pero, a diferencia de éstos, su volumen tampoco es fijo. También son fluidos, como los líquidos.
n los gases, las fuerzas que mantienen unidad las partículas son muy pequeñas. En un gas el número de partículas por unidad de volumen es también muy pequeño. Las partículas se mueven de forma desordenada, con choques entre ellas y con las paredes del recipiente que los contiene. Esto explica las propiedades de expansibilidad y compresibilidad que presentan los gases: sus partículas se mueven libremente, de modo que ocupan todo el espacio disponible. La compresibilidad tiene un límite, si se reduce mucho el volumen en que se encuentra confinado un gas éste pasará a estado líquido. Al aumentar la temperatura las partículas se mueven más deprisa y chocan con más energía contra las paredes del recipiente, por lo que aumenta la presión.

































































































































 
Cuando un cuerpo, por acción del calor o del frío pasa de un estado a otro, decimos que ha cambiado de estado. En el caso del agua: cuando hace calor, el hielo se derrite y si calentamos agua líquida vemos que se evapora. El resto de las sustancias también puede cambiar de estado si se modifican las condiciones en que se encuentran. Además de la temperatura, también la presión influye en el estado en que se encuentran las sustancias.
Si se calienta un sólido, llega un momento en que se transforma en líquido. Este proceso recibe el nombre de fusión. El punto de fusión es la temperatura que debe alcanzar una sustancia sólida para fundirse. Cada sustancia posee un punto de fusión característico. Por ejemplo, el punto de fusión del agua pura es 0 °C a la presión atmosférica normal.
Si calentamos un líquido, se transforma en gas. Este proceso recibe el nombre de vaporización. Cuando la vaporización tiene lugar en toda la masa de líquido, formándose burbujas de vapor en su interior, se denomina ebullición. También la temperatura de ebullición es característica de cada sustancia y se denomina punto de ebullición. El punto de ebullición del agua es 100 °C a la presión atmosférica normal.


En el estado sólido las partículas están ordenadas y se mueven oscilando alrededor de sus posiciones. A medida que calentamos el agua, las partículas ganan energía y se mueven más deprisa, pero conservan sus posiciones.
 Cuando la temperatura alcanza el punto de fusión (0ºC) la velocidad de las partículas es lo suficientemente alta para que algunas de ellas puedan vencer las fuerzas de atracción del estado sólido y abandonan las posiciones fijas que ocupan. La estructura cristalina se va desmoronando poco a poco. Durante todo el proceso de fusión del hielo la temperatura se mantiene constante.
En el estado líquido las partículas están muy próximas, moviéndose con libertad y de forma desordenada. A medida que calentamos el líquido, las partículas se mueven más rápido y la temperatura aumenta. En la superficie del líquido se da el proceso de vaporización, algunas partículas tienen la suficiente energía para escapar. Si la temperatura aumenta, el número de partículas que se escapan es mayor, es decir, el líquido se evapora más rápidamente.
  Cuando la temperatura del líquido alcanza el punto de ebullición, la velocidad con que se mueven las partículas es tan alta que el proceso de vaporización, además de darse en la superficie, se produce en cualquier punto del interior, formándose las típicas burbujas de vapor de agua, que suben a la superficie. En este punto la energía comunicada por la llama se invierte en lanzar a las partículas al estado gaseoso, y la temperatura del líquido no cambia (100ºC).
 En el estado de vapor, las partículas de agua se mueven libremente, ocupando mucho más espacio que en estado líquido. Si calentamos el vapor de agua, la energía la absorben las partículas y ganan velocidad, por lo tanto la temperatura sube.

FUERZAS INTERMOLECULARES



Las fuerzas intermoleculares se definen como el conjunto de fuerzas atractivas y repulsivas que se producen entre las moléculas como consecuencia de la polaridad que poseen las moléculas.
Cuando dos o más átomos se unen mediante un enlace químico forman una molécula,  los electrones que conforman la nueva molécula recorren y se concentran en la zona del átomo con mayor electronegatividad, definimos la electronegatividad como la propiedad que tienen los átomos en atraer electrones. La concentración de los electrones en una zona  definida de la molécula crea una carga negativa, mientras que la ausencia de los electrones crea una carga positiva.
Denominamos dipolos a las moléculas que disponen de zonas cargadas negativamente y positivamente debido a la electronegatividad y concentración de los electrones en las moléculas.
Podemos asimilar el funcionamiento de un dipolo a un imán con su polo positivo y su polo negativo, de tal forma que si acercamos otro imán el polo positivo atraerá al polo negativo y viceversa, dando como resultado una unión.




Las fuerzas intermoleculares que actúan entre las moléculas se clasifican en :
  1. Dipolos permanentes
  2. Dipolos inducidos
  3. Dipolos dispersos.
  4. Puentes de hidrógeno
Dentro de los 4 grupos descritos anteriormente, las fuerzas más relevantes son las 3 primeras, también conocidas como fuerzas de Van der Waals.
-Dipolos permanentes: Este tipo de unión se produce cuando ambas moléculas disponen de cargas positivas y negativas, es decir son moléculas que polares o que tienen polaridad, atrayéndose electrostáticamente y formando la unión.
     -   Dipolos inducidos: Este tipo de unión se produce cuando una molécula no polar redistribuye la concentración de los electrones (tiene la posibilidad de polarizarse) al acercarse una molécula polar, de tal forma que se crea una unión entre ambas moléculas.
En este caso la molécula polar induce la creación de la molécula apolar en una molécula polar.
- Dipolos dispersos: Este último caso la unión se produce entre moléculas no polares pero que pueden polarizarse, y cuando esto último ocurren se atraen mutuamente creando la unión molecular.La unión que se crea en este tipo de dipolos tiene una intensidad muy débil y una vida muy corta
Las energías de unión generadas por las fuerzas intermoleculares son más reducidas que las energías generadas en los enlaces químicos, pero existen en mayor número que los otros, por lo que a nivel global implican un papel muy importante.
Van der Waals  ------ 0,1 a 10 Kj/mol
Enlace Covalente ------ 250 – 400 Kj/mol.
En la siguiente tabla se encuentra una comparativa entre las propiedades de las fuerzas intermoleculares y los enlaces químicos:
Fuerzas intermoleculares:
  1. Son muy dependientes de la temperatura, un aumento de temperatura produce un decremento de las fuerzas intermoleculares.
  2. Son mas débiles que los enlaces químicos, del orden de 100 veces menor
  3. La distancia de unión es a nivel de micras
  4. Las uniones no están direccionadas.
Enlaces Químicos:
  1. No son tan dependientes de la temperatura
  2. Son más fuertes que las fuerzas intermoleculares
  3. La distancia de unión es muy pequeña, a nivel de Amstrongs
  4. Las uniones están direccionados.
Con todo esto, dentro de un material adhesivo como es un polímero, nos encontramos con uniones químicas entre átomos que forman moléculas y fuerzas intermoleculares entre las propias moléculas de los polímeros. El conjunto de estos enlaces, uniones y fuerzas son las responsables de las propiedades adhesivas y cohesivas de los pegamentos, adhesivos y sellantes.
El enlace puente de hidrógeno es una atracción que existe entre un átomo de hidrógeno (carga positiva) con un átomo de O, N o X (halógeno) que posee un par de electrones libres (carga negativa).
Por ejemplo el agua, es una de las substancias que presenta este tipo de enlaces entre sus moléculas. Una molécula de agua se forma entre un átomo de Oxigeno con seis electrones de valencia (sólo comparte dos y le quedan dos pares de electrones libres) y dos hidrógenos con un electrón de valencia cada uno (ambos le ceden su único electrón al oxígeno para que complete el octeto).
La molécula de agua es una molécula polar, por lo que presenta cuatro cargas parciales, de esta manera la fracción positiva (un hidrógeno) genera una atracción con la fracción negativa de otra molécula (el par de electrones libres del oxígeno de otra molécula de agua). Teóricamente una molécula de agua tiene la capacidad de formar 4 puentes de Hidrógeno